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Abstract. The magnetic diffuse scattering from cubic alloys of y-MnNi is very difficult 
to explain using a collinear model for the spin structure without introducing physically 
unjustifiable spin distortions. We show how to generate the experimentally observed scat- 
tering with a parameter free model based on short range Heisenberg interactions between 
spins in a triple-Q groundstate. We do however require short range phase coherence between 
neighbouring impurities in order to be able to explain the high diffuse intensity. 

1. Introduction 

There has been a great deal of both experimental and theoretical work concerning the 
nature of the magnetic structure of y-Mn based alloys [l-111. For a long time the 
magnetic structure of the y-Mn alloys has been assumed to be the collinear type I 
antiferromagnet, consisting of ferromagnetic sheets perpendicular to the (001) direction 
with the spins aligned along (001) (figure l(u)), thus having tetragonal symmetry. The 
FCC lattice is magnetically frustrated, however, and this means that there are other 
possible spin arrangements to be considered. 

The simplest understanding of topological frustration is achieved by considering an 
equilateral triangle of spins. If any two of the spins are aligned antiparallel, then the 
third spin cannot be made simultaneously antiparallel to both, and so this third spin is 
frustrated and unable to decide where to point. The face centre cubic lattice has many 
equilateral triangles and so many spins are frustrated. A more quantitative measure of 
frustration is to study the degeneracy of the minimum of the structure factor [ll]. The 
relevant degeneracy for type I antiferromagnets constitutes the triply degenerate points, 
Q, = (2n/u)(l, O,O) ,  Q2 = (2n/a)(0,1,0) and Q3 = (2n/u)(O, 0 , l ) .  The cubic sym- 
metry ensures that if they constitute the minimum, then the minimum is at least triply 
degenerate, whatever the range of the interaction. We will restrict attention to nearest 
neighbour interactions in this article, for which the degeneracy is much higher. 

As well as the collinear antiferromagnet, another postulated spin structure is the so- 
called triple-Q structure (figure l(b)) which has cubic symmetry and as such is a more 
natural candidate for describing the truly cubic alloys. In fact it is quite easy to categorise 
all the possible type I antiferromagnetic spin configurations [l]  and a simple picture 
emerges with the more exotic states being described as a linear superposition of the three 
collinear arrangements associated with the three Cartesian directions. Each Cartesian 
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Figure 1. ( U )  The collinear single-Q state: Q = (2rc/u)(O,O,l). ( b )  The triple-Q state. 

direction is associated with a ‘Q’ and then the collinear phase may be considered a single- 
Q state whilst the triple-Q state may be considered as a linear superposition of three 
equal amplitude single-Q states. 

A good dea! of theoretical work has been carried out in order to examine the relative 
stability of the single-Q and triple-Q structures. In the first instance, band structure 
calculations of y-Mn, assuming the single-Q structure, gave a self-consistent magnetic 
moment of 1.9 pB for Mn [2,3]. This is smaller than the experimentally determined 
value of 2.2 pB. Also, Fermi surface electron and hole nesting was found and it was 
argued that such a nesting could give rise to a coupling favouring a multiple-Q structure 
[4]. The triple-Q state was also found to be relatively stable to the single-Q state by 
considering a 4-spin exchange interaction [5-81 which removes the degeneracy between 
single-Q and multi-Q structures, in particular when the electron band is almost half full. 
A local spin density functional theory has also been used to calculate the relative stability 
of spin directions in certain types of non-collinear antiferromagnets 191. 

The basic phenomena proposed in these theoretical papers are all intrinsic to the 
ground state. Recently, however, a new suggestion has been put forward [lo]. Atomic 
impurities tend to stabilise different spin arrangements, giving rise to either multiple-Q 
or single-Q (collinear) structures. A model has recently been proposed whereby it is 
suggested that y-Mn is driven from a collinear to a non-collinear structure by doping 
with, e.g., Ni or Fe [ l l ] .  This model proposes a magnetic moment distribution for Mn 
atoms in the nearest neighbour environment of the paramagnetic transition metal 
impurity and takes into account the relaxation of the direction of Mn magnetic moments 
as a consequence of the presence of a paramagnetic impurity. A non-collinear, tetra- 
hedral arrangement of Mn magnetic moments is locally preferred. 

The triple-Q structure is a non-collinear structure but experimentally it has not been 
possible to distinguish between equally populated ‘domains’ of single-Q and triple-Q 
structures. The reason is the fact that the triple-Q state is a linear superposition of single- 
Q states and hence any probe that makes a ‘long distance average’ measurement will not 
detect the difference. For magnetic neutron Bragg scattering the magnetic structure 
factors are identical in the two cases as was first pointed out by Kasper and Kouvel [ 11. 

Since ‘long distance average’ probes cannot settle the experimental issue of the spin 
structure, another possibility is to look at short-range or ‘local’ probes. An application 
of anisotropy measurements of y-ray emission from spin polarised 54Mn nuclei in FCC 
antiferromagnetic Mq2Ni2* has been used to distinguish between the single-Q and triple- 
Q phases and appears to give strong evidence for a triple-Q structure [ 121. We will argue 
that magnetic diffuse scattering may also be considered to be ‘local’ in character. 
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Another approach to this problem has been to study the spin-wave spectrum of both 
single-Q and triple-Q structures. In principle, mode counting can be used to differentiate 
between the spin structures [ 131. Although this argument has been used in lanthanide 
systems where spin-orbit coupling is strong, it is not easy to justify it for the present 
alloy systems. Nevertheless, the magnetic structure Of FCC y-Fe66Mn34 has been predicted 
to be single-Q on just these grounds [14, 151. A Mossbauer transmission study, however, 
favours a triple-Q structure for FCC y-FeMn alloys [16] in direct contradiction to the spin- 
wave measurement. 

The effects on the magnetic structure of y-Mn based transition metal alloys have 
been extensively studied by the magnetic diffuse scattering of neutrons [ 17,221. Neutron 
Bragg diffraction can only furnish average information about the magnetic order, but 
magnetic diffuse neutron scattering furnishes information about the fluctuations from 
the average magnetisation. Since an atomic impurity is localised in real space, we might 
expect that the disturbance induced would also be localised around the dopant site 
and hence that fluctuations in the magnetisation would depend only on the local spin 
arrangements. Thus, if the spin rearrangement induced by the impurity atoms has a 
'smaller length scale than the size to be expected for magnetic domains, we might expect 
magnetic diffuse scattering to be a local probe of the magnetic structure and as such 
ought to give evidence for the local spin configuration within a domain. It may therefore 
be possible to investigate directly the nature of the disturbance of Mn magnetic moments 
due to the presence of a magnetic or non-magnetic defect. Most of the available data 
has been analysed within the framework of a model which takes into account a linear 
superposition of collinear magnetic defects, and whereby a defect increases or decreases 
the magnitude of Mn moments in its nearest neighbour environments [23]. A model 
incorporating a precise dependence of the magnetic moments at any site as a function 
of its magnetic environment has also been applied to available diffuse neutron scattering 
data on y-MnNi alloys [24]. In either case there is a large discrepancy between both 
proposed models and the available data and this suggests that the diffuse magnetic 
scattering is not due to simple defects in the collinear antiferromagnetic structure. 

In this paper, the magnetic diffuse scattering is calculated from the model of the non- 
collinear defects at first nearest neighbours proposed by Long [ll]. The calculated 
diffuse scatering within the framework of this model, which is virtually parameter free, 
is compared with the available data from a single crystal of FCC y-Mn73Ni27. The calculated 
wavevector dependence of the diffuse scattering is in good agreement with the measured 
diffuse scattering, particularly in the [OOl] direction. 

There are several theoretical questions which must be asked before we can make a 
connection between the diffuse scattering experiments and magnetic structure deter- 
mination. Firstly, we must find out what information the technique has to offer; whether 
one can separate out the contributions from different atoms (i.e. if we can determine 
the spin distortion unambiguously), whether one can deduce the point group symmetry 
that the impurity has, and what the relationship between Bragg and diffuse scattering 
is. Only secondly, can we then ask how this information depends on the actual average 
magnetic moment distribution present. In section 2 we will introduce simple descriptions 
of how to analyse both Bragg and diffuse scattering and try to find out how to make a 
connection between diffuse scattering and non-collinear spin fluctuations. 

Even if one can find a model spin arrangement for the spin fluctuations which 
successfully predicts the neutron scattering, there is still an important physical question 
to consider. What physical phenomena will favour the chosen spin arrangement over 
the other possible choices? The answer to this question would shedlight on theunderlying 
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interactions between the impurities and surrounding moments. In section 3 we will 
introduce a very simple classical model which will involve Heisenberg interactions 
between neighbouring spins. We will show that the ground state to this problem yields 
good agreement with the diffuse scattering data for cubic y-MnNi and that small dis- 
placements away from this solution lead quickly to a loss of agreement with the experi- 
mentally observed scattering. We are therefore demonstrating that a simple Heisenberg 
description of the spin interactions predicts the observed diffuse scattering and we 
suggest that this is a possible description for the underlying physical phenomena at work 
in the vicinity of the transition metal impurity. 

2. Bragg and diffuse scattering from type I FCC antiferromagnets 

First we take a look at simple Bragg scattering from commensurate antiferromagnets. 
This will allow us to represent type I antiferromagnetism with a formalism which is useful 
for comparing Bragg scattering with diffuse scattering. The electrons which carry the 
moment in Mn are predominantly in d-orbitals. The spatial extent of these d-orbitals 
leads to a complication. One gets an 'atomic form factor' decay in the magnetic Bragg 
scattering corresponding to this uncertainty in position. If we ignore this contribution 
initially and assume that the spins are perfectly localised on the nuclei, then the spin 
density on each site may be expanded in terms of Fourier components which define the 
periodic spatial variations of the magnetism: 

The Qi is usually a single point, but in frustrated antiferromagnets, we find distinct 
Qi which lead classically to degenerate magnetic solutions. This equation therefore 
describes a linear superposition of different magnetic components, the m(Qi), where 
each component relates to a distinct point in reciprocal space, the Qi. For the case of 
type I antiferromagnetism on a FCC lattice, there are three relevant Q points, Q l  = (2n/ 
a)(l, O , O ) ,  Q 2  = (2n/a)(0, 1,O) and Q3 = (2n/a)(O,O,l). The Qi for type I anti- 
ferromagnetism are commensurate with the original lattice. The magnetic lattice sym- 
metries are the cubic superlattice corresponding to the four atoms per unit cell 
experimental description for FCC. The Bragg reflections are found on the reciprocal 
space cubic lattice generated by the Qi, which includes the nuclear Bragg reflections of 
the BCC superlattice. The collinear arrangement corresponds to the case where only m3 
is non-vanishing and the triple-Q case is that where the three m values are all of equal 
magnitude and form an orthogonal set. 

The Bragg scattering intensity is related to the Fourier transform of the spin density: 

where G is the reciprocal lattice for the original translational symmetry and N is the 
number of atoms in the crystal. 

The most important consequence of assuming that the spins lie at the nuclear 
positions, is that the Fourier transform of the spin density isperiodic with the underlying 
reciprocal space lattice symmetry; in this example BCC. The spin-density information for 
such a system can be deduced by measuring the relevant scattering in only one Brillouin 
zone. For all our modelling of this problem this contribution to the scattering will be 
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Figure 2. ( a )  The magnetic diffuse scattering from a 'multi-domain' single crystal of Mn,,Ni,,. 
This data was originally published by Moze and Hicks [22]. We have renormalised the data 
so that the spatial average of independent, isolated, paramagnetic impurities with all spins 
localised on the nuclei would yield unit scattering per impurity. The renormalisation includes: 
a rescaling of 3/2 to compensate for the loss of the parallel spin component, a division by the 
magnetic form factor to compensate for the spatial extent of the d orbitals, a division by the 
concentration of impurities and a division by the square of the magnetic moment on the Mn 
atoms, as deduced by Bragg scattering. usually, extra concentration dependence and short 
range order factors are included, but we deal with coherence in our own way and therefore 
do not further renormalise the data. ( b )  The magnetic diffuse scattering intensity from a 
paramagnetic impurity with a variable shell of 'relaxed' nearest neighbours. The chosen 
parameters are: 

n = g  A = !  
G c I l(1 - C)* l(1 + C)' 

0 -0.061 2.828 9.000 7.059 
4 0.044 2.263 4.678 5.589 
8 0.212 1.688 1.769 4.182 
12 0.542 1.103 0.255 2.895 
16 1.599 0.514 0.095 1.783 

19.47 30 0.000 1.000 1.000 

periodic. Experimentally, the spatial extent of the d orbitals leads to the atomic form 
factor complication. This effect is well understood [25] and leads to a slow decay of the 
scattering from zone to zone. The decay is well described by the Fourier transform 
of the relevant charge density from an atomic calculation. In order to facilitate our 
experimental and theoretical comparison, we have extracted the atomic form factor 
dependence from the experimental data (see figure 2). 

There is one final important subtlety and this relates to the fact that neutrons can 
only scatter from magnetic moments perpendicular to the direction of the momentum 
transfer. One finds that the neutron scattering intensity is proportional to [25]: 
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Z(K) cc S l ( K )  * S l * ( K )  

S l ( K )  = K x ( S ( K )  x K) = S(K)  - (K * S(K))K 
(2 .3~)  

(2.3b) 

where S L ( K )  is the component of the spin density perpendicular to the momentum 
transfer, K .  

For Bragg scattering we find: 

and we find the expected Bragg reflections at the magnetic reciprocal lattice vectors. 
There are two important physical quantities which need to be deduced. 

Firstly, there is the actual direction of the spins in real space. If the neutrons scattered 
isotropically, then the intensity would only depend on the magnitude of the moment 
and the true spin direction would be unobtainable. It is the fact that neutrons scatter 
off the perpendicular component of spin which must be used to deduce the moment 
direction. In practice one looks at the Bragg reflection intensities around the reciprocal 
lattice and fits the intensities on a shell to Sap - GaGp for the relevant values of G. This 
procedure is used for each distinct Qi and the direction of the relevant m(QJ is deduced. 
For the case of FCC Mn, we find that in allexperimental situations the magnetic moment 
of each component is parallel to the relevant Qi. This is simple to prove since all one 
needs to do is to look at the Qi point and observe that it does not have a Bragg reflection 
because this vector is parallel to the spin direction of this component. 

Secondly, we need to find the relative magnitudes of the distinct, m(QJ and whether 
the state is single-Q or multiple-Q. At this stage the structure determination problem 
emerges. If we had a single domain, then a simple comparison of the intensities at 
symmetrically related magnetic Bragg reflections would yield the relative magnitudes 
of the m(Qi).  The most natural magnetic Bragg reflections are (2n/a)(0,1, l) ,  (2n/ 
a)(l ,  0 , l )  and (2n/a)(l, 1,0), since they are the most intense. The angular variations 
are optimised since these Bragg vectors are orthogonal to the relevant magnetic com- 
ponents. These Bragg reflections are also second closest to the origin and so optimise 
the form factor dependence. The only Bragg reflections closer to the origin are the Qi 
and these reflections vanish because of the angular factors, a point quite central to the 
controversy in these materials. Unfortunately, as well as a triple-Q state, three equally 
populated single-Q domains would yield equal intensity Bragg reflections. 

The Bragg reflections are very intense and very sharp, but superimposed on top of 
the magnetic Bragg spectrum is the magnetic diffuse scattering. This contribution comes 
from the 'fluctuations' of the spins away from the average, both static and dynamic. In 
this article we are interested in the static deformations around impurity Ni sites. Since 
we are considering a disordered alloy, the diffuse scattering is strong and rises as the 
impurity fraction is increased. In order to facilitate comparison between experiment 
and theory, we have normalised the scattering by dividing through by the number of 
impurities present. 

The same basic theory covers magnetic diffuse scattering, where now the spins are: 

and the 6S(R) are the distortions of fluctuations away from the average, which in our 
case will be localised distortions around Ni impurities. The neutrons still scatter from 
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the magnetic moments perpendicular to the momentum transfer and the magnetic 
diffuse contribution is: 

ZDiffuse ( K )  6s ( K )  * 6s * ( K )  

which is superimposed on the Bragg contribution, and where the atomic form factor 
contribution has again been suppressed. 

The magnetic diffuse scattering around an impurity is therefore directly related to: 

Since the distortions around the impurity are not periodic, the form of 6S'(K) is rarely 
sharp (hence the name diffuse) and the functional dependence of the diffuse scattering 
behveen the Bragg reflections is the experimental probe of the spin structure. To the 
extent that the spins are localised on the nuclei (namely the magnetic form factor), the 
scattering remains periodic in reciprocal space. 

As with magnetic Bragg scattering only the magnitude of the 6S'(K) can be deter- 
mined and the loss of the relative phase eliminates any possibility of uniquely determining 
the distortion. Also analogous to Bragg scattering, much can be deduced from the 
vanishing of the magnetic diffuse scattering due to the scattering vector being parallel 
to the spin deformation. Indeed this is the centre of the controversy in y-MnNi. 

The dominant contribution to the magnetic diffuse scattering appears precisely 
where the missing magnetic Bragg reflections would be. The spinfluctuations seem to be 
perpendicular to the spin directions. We will expend a lot of effort showing that this does 
not mean that the basic spin structure is necessarily non-collinear as has previously been 
assumed [26], and in fact we will produce a rather different argument to try to reach this 
conclusion. 

3. A collinear description for the diffuse scattering 

It has previously been stated that it is difficult to explain the observed diffuse scattering 
in cubic y-MnNi using a collinear defect model [26]. We would like to qualify this claim 
and replace it with the claim that it is difficult to believe in the explanation for the diffuse 
scattering suggested by the collinear model. 

Let us consider a single domain of collinear type I antiferromagnet and assume that 
there is one impurity atom with a reduced value of the moment. This impurity atom 
breaks the translational symmetry and most of the spatial point group symmetry. There 
are certain symmetries that are not automatically broken and we will assume that these 
symmetries are not spontaneously broken. 

The first unbroken symmetry is the pure spin symmetry associated with rotations 
about the spin quantisation axis. The arrangement of spins about the impurity can 
remain collinear. The second set of unbroken symmetries are spatial point group sym- 
metries about the impurity atom. These symmetries map the shells of atoms surrounding 
the impurity onto themselves. The result is that atoms on the same magnetic sublattice 
in the same shell of neighbours should have the same moment. 

The remaining degrees of freedom consistent with these symmetries are the changes 
of moment lengths on surrounding shells. If the original moment on the impurity 
sublattice is S then we may parametrise the new spins by: (1 + A ; ) S  for the spins on the 
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same sublattice and the nth shell and -(1 + AA)S for spins on the other sublattice and 
the nth shell. 

The diffuse neutron scattering from a domain oriented parallel to the x1 axis and 
neglecting the explicit form factor dependence is: 

l D i E u s e ( K )  = 16s: 1' = (1 - ~ ? ) I K -  1 +E A:yk --E Aiy& 1's' ( 3 . 1 ~ )  
n n 

where the impurity spin is K S  and y;, is the relevant structure factor: 

yz, = E elk.(R+cm) (3. lb)  
shell 

in terms of the positions of the four atoms in the unit cell, c,. 
As has been previously pointed out [27], the contribution at the Bragg reflections Q2 

and Q3, corresponding to the other domains, does not uanish and indeed could be the 
source of the observed diffuse scattering in the y-MnNi alloys. 

If we assume that there are three equally populated domains in the cubic crystal, that 
only the moments on the nearest neighbours of the impurity are disturbed and finally 
that we will measure parallel to the z axis, then: 

fs2z(a)  = w z ( K ) =  ps;12 = ~ 1 K - i - 4 4 i l t + 4 ( ~ y - ~ ~ ) c o s ~ n 1 2 s 2  (3 .2~)  

where K = dQ3 and we use A to describe the spatial dependence in the figures. Using 
C = cos An we may parametrise this as: 

(3.26) 

where l i s  a contribution to the total intensity and C parametrises the functional depen- 
dence. In figure 2 we have plotted this function for a few values of the parameters. 

We have chosen a range of values for C and the intensities, I ,  have been chosen 
according to the calculations of the next section (see (4.5)) which have an identical 
functional form. The first observation to make is that the functional form of the observed 
experimental scattering can only be seen for a very restricted set of values of C. We need 
C - 4 or cp - 12". The second observation is that the intensity of these calculations is 
way below that observed. If we take for reference the peak height at [OOl], then this 
takes the value (1 + 4A:)' in this model. In order to get a reasonable fit to experiment, 
we must allow Ay - 1 and Ai - 0. This is precisely the basic content of the fit found by 
Moze and Hicks [27]. In simple terms, the spins on nearest neighbours with parallel 
spins doubZe in length while the spins on nearest neighbours with antiparallel spins 
remain virtually unaffected. Extensions to larger clusters in that analysis improved the 
fit, but did not alter this simple picture. 

This scenario seems rather extreme, especially if we consider nearby impurities 
which, when on the same magnetic sublattice, would elongate the parallel spins even 
further. If we relax the necessity for the intensities to agree, then the basic functional 
form of the scattering can also be achieved with Ay - 0.2 and A', - -0.1. This choice 
ensures that the sum of the spins on the nearest neighbours remains constant and is 
pictured in figure 2 as the curve marked cp = 12". Although this assumption is more 
physically satisfying, we must at some stage seriously consider how to explain the huge 
surplus intensity at the [OOl] position, and further explain why near neighbour impurities 
on different sublattices do not just cancel out. 

In this model we predict that spins parallel to the lost spin on a paramagnetic impurity 
grow to compensate for the loss and antiparallel spins shrink also to compensate. This 

$S2l(A) = W Z ( K )  = 16s: 12 = W l ( C  - C)2 
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could be a conclusion, but a more sensible view to take, is to ask whether or not this is 
physically reasonable and, in addition, what physical phenomena might promote this 
behaviour. 

4. Classical Heisenberg cluster calculations 

In this section we focus on the orientations of the spins in the vicinity of an impurity and 
assume that the lengths of the spins are fixed. The imposed constraints on the lengths of 
the spins are introduced on physical grounds and ensure a coupling between the three 
orthogonal spin density waves which is not a simple superposition of linear effects. 

If we apply these assumptions to the collinear arrangement of the previous section, 
then there is no residual freedom in the system and the difiiist: scattering would be 
structureiess. This is the nztu:a! ccinpaiijOii between the single-Q and triple-Q states 
for our model. The single-Q state yields scattering with no basic reciprocal space depen- 
dence, which corresponds precisely to the loss of spin on the impurity atom with all other 
spins remaining unaffected. This picture has also motivated the normalisation of the 
results we have presented. We present our results with a normalisation for which this 
featureless impurity state would on average exhibit unit scattering. 

The spin structure that is the focus of this section is the triple-Q structure of figure 
l(b). The experimental fact, that the tetragonal structural distortion of the weakly doped 
alloy is lost in the present system, is the main reason for believing that this spin structure 
might be a more natural starting point than the collinear state. We now proceed to a 
treatment of impurities in the triple-Q state which is precisely analogous to the devel- 
opment of the last section. 

First let us consider the replacement of one spin in the system with an impurity. The 
impurity breaks most of the symmetries of the system. Translational symmetry is lost 
and point group symmetries which do not leave the impurity invariant are also broken. 
The residual symmetry is the point group symmetry about the impurity site. Let us 
consider the possible orientations of the spins around the impurity which maintain the 
point group symmetry of the triple-Q spin arrangement in the absence of the impurity. 

The point group symmetries map the shells of nearest neighbours onto themselves. 
We find shells of two types; shells composed of atoms on the same sublattice as the 
impurity and shells which are composed of equal numbers of atoms from each of the 
three other sublattices. Point group symmetry suggests first that atoms on the same 
sublattice which can be mapped onto each other by a pure spatial symmetry should have 
an identical spin. Secondly combined spin and space rotations about the direction of the 
spin replaced by the impurity suggest that the spins on the sublattice containing the 
impurity should have unchanged orientation while the spins on the other sublattices can 
only be modified by a component of spin parallel to the spin replaced by the impurity. 

If we denote the four spin directions in the triple-Q state by {Sa; a = 0,1 ,2 ,3}  where 
the impurity replaces an S o  spin, then the spins in the presence of the impurity may be 
represented by: 

T ;  = COS ens, + sin en(3s0 + ~ , ) /22 /2  

T; = - sin q n S o  + cos q n ( 3 S a  + S0)/22/2 

(4. l a )  

(4. lb)  

for a = 1 ,2 ,3 ,  where n is a label running over the shells of neighbours to the impurity 
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and the angles 8, and qn are two ways of representing the residualorientational freedom. 
We have: 

s, - T: = s2 cos e,, (4.2a) 

S o  T; = (-l)S2sin qn (4.2b) 

and so the physical interpretation of 8, and qn is immediate. On is the angle through 
which the spin has rotated and qn is the angle that the spin makes with the plane 
perpendicular to So.  If we recall that for the Cu3Au structure with moments on the Cu 
sites, the classical ground state finds qn = 0, and so cpn measures the orientation away 
from this reference state. 

There is no problem in determining the associated diffuse scattering from this type 
of impurity and we find: 

(4.3b) 

(4.3c) 

in terms of the structure factors yia, where we only include shells of neighbours not on 
the impurity sublattice. In section 2 we focussed on the Bragg reflections which vanish 
because the momentum transfer is parallel to the relevant spin component. If we restrict 
kin (4.3) to k = AQ3, along the z axis parallel to [OOl],  then: 

2 
COS 9, n $S2Z(A) = U2Z(k)  = I 6Si  1' = f [ K - 1 + E (m [ y ;  - 3yi3] - sin pl, y; + yb)]  S 2 .  

n 

In figure 2 we restrict attention to nearest neighbours, on the assumption that the 
impurity disturbance is very short range, and calculate the diffuse scattering as a function 
of A for various orientations of the nearest neighbour shell: 

The functional dependence of the present triple-Q model is identical to that found in the 
previous section for collinear spins. In fact one can view the present results as a linear 
superposition of three collinear impurities in the three Cartesian directions. The assump- 
tion of fixed spin magnitude ensures that all the spins compensate for the impurity and 
we are restricted to low intensity scattering. This model can explain the functional form 
of the scattering but we still need an explanation for the surplus intensity. The observed 
peak in the diffuse scattering at the magnetic reciprocal lattice vector Q3 (namely A = 1) 
is found for only a small range of angles centred on Q, - 12". 
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A 

Figure 3. The magnetic diffuse scattering intensity from a paramagnetic impurity with a fixed 
shell of ‘relaxed’ nearest neighbours and a variable shell of ‘relaxed’ next nearest relevant 
neighbours. The chosen parameters are: 

$1 $2  A = O  a = i  

12 
12 
12 
12 
12 
12 

18 
19 
20 
21 
22 
23 

1.185 
0.478 
0.088 
0.009 
0.236 
0.761 

3.958 
3.220 
2.550 
1.951 
1.427 
0.980 

The second shell of neighbours is unmoved when $2  = 19.47122” 

In figure 3 we fix the nearest neighbour orientation and allow the next nearest relevant 
shell of neighbours to move. The peak sharpens when the next shell of neighbours rotates 
in the opposite direction to the first shell but at the same time the intensity drops quite 
sharply. 

So far we have considered the orientations of the spins surrounding the impurity 
which best match the magnetic diffuse scattering near the magnetic Bragg reflections in 
y-MnNi alloys. Now let us consider which physical phenomena might induce these 
particular spin orientations. In a recent article, classical Heisenberg energies were used 
to predict the orientation of the spins in a cluster surrounding an impurity [ll]. Let us 
see what this model predicts for the magnetic diffuse scattering. 

We consider a cluster of spins around the impurity which are allowed to relax while 
the remainder of the spins remain in the triple-Q spin configuration. The cluster of spins 
relaxes in such a way as to minimise the classical Heisenberg energy with nearest 
neighbour antiferromagnetic exchange. The calculational details are given in the appen- 
dix and we give the results for when the nearest neighbour shell and first two relevant 
shells are allowed to relax in figures 4(b) and 4(c) respectively as a function of the 
impurity spin magnitude. 
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Figure 4. (a) The atomic positions of the first and second shells of relevant neighbours to the 
Ni impurity. (b )  The angle that the nearest neighbour spins rotate as a function of the 
impurity length reduction, K, when they minimise the classical Heisenberg energy. ( c )  The 
angles that the first two neighbouring shells rotate as a function of the impurity length 
reduction, K, when they minimise the classical Heisenberg energy. (d )  The magnetic diffuse 
scattering intensity from the Heisenberg relaxed impurity calculations. 

For both calculations the nearest neighbour shell is oriented in such a way as to yield 
the large peak at the [OOl] position (figure 4(d)). The nearest neighbour shell moves so 
as to compensate locally for the impurity spin. When the next shell is allowed to relax, 
we find that the shell of nearest neighbours overcompensates for the impurity spin and 
the outer shell cancels off this extra contribution by moving a small angle in the opposite 
direction. 

The cluster calculations so far presented have been for very short range interactions 
between spins and very dilute impurities. There is no direct evidence contradicting the 
assumption that the spin-spin interactions are short range, but the assumption that the 
impurities are dilute is very dubious. In the y-MnNi alloys the cubic phase is only 
observed at a doping level of more than about 20% Ni in Mn. It was argued in our 
previous work that the doping of paramagnetic impurities drives a collinear phase into 
a non-collinear phase but that macroscopic doping is required. In order to analyse the 
likely effects of stronger concentrations of impurities, we look at a pair of nearby 
impurities. There is evidence of short range order between Ni atoms, there being a 
higher probability of finding two Ni atoms on cube diagonals [22,27]. We therefore 
study the case of two impurity spins at positions 0 and a ( l , l ,  1). 
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Figure 5. (a) The atomic positions of the spins 
which are free to relax with two impurities on a 
cube diagonal. ( b )  The angles through which the 
spins rotate as a function of the impurity length 
reduction, K ,  when they minimise the classical 
Heisenberg energy. (c) The magnetic diffuse scat- 
tering intensity from two impurities on the cube 
diagonal and their Heisenberg relaxed neigh- 
bours. 

The symmetry consistent with these impurities is shown in figure 5(a)  where: 

T, = - sin cp T ~ o  + cos cp , ( 3 ~ ,  + sO)/2V2 

R , ~  = - sincpRsO - ( c o s c p R / ~ V ~ ) [ c o s q j R ( ~ ~ o  + 3 ~ ,  + 3sB) 

(4 .6~)  

- ~ ‘ 3 s i n q j ~ ( ~ ~  - s,)] (4.6b) 

(4 .6~)  U, = - sin cpvs0 + cos cpL,(3s, + s0)2V2 

in terms of the three angles So . X = (- 1)S2 sin c p x  and the angle q j R  which is the angle 
through which the spin has rotated away from the plane containing the original spin and 
the impurity spin. We show how to determine the lowest energy in the appendix and 
give the result in figure 5(b).  The angles that the spins rotate are uery similar to the single 
impurity case, where the only complication is that the spins between the two impurities 
do not rotate as far as the single impurity calculation suggests. This result shows that 
simple naive additive arguments cannot be trusted, because nearest neighbours and next 
nearest neighbours rotate in opposite directions and the topology means that some 
atoms fulfill both roles. The symmetry breaking rotations q j R  are very small in all cases. 

When we analyse the diffuse scattering from this cluster we discover several facts. 
Firstly the functional form of the experimental scattering is reproduced as with the single- 
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impurity calculations. Secondly and much more important, the intensity of the magnetic 
diffuse scattering is greatly enhanced. If we compare the calculation of one impurity 
presented in figure 4(d) with the present result in figure 5(c), then we find an increase in 
the scatteringper impurity atom of a factor of two. The simple corrections of the Marshall 
model [23] would predict a reduction in intensity because some of the contributing host 
atoms are replaced by impurities (in fact the factors (1 - c) where cis the concentration 
of impurities in that analysis are attributable to this source). The source of the extra 
scattering intensity is easily understood. In the Marshall model the impurities are 
assumed independent and so a linear superposition of the scattering intensity is assumed, 
In our model the two impurities are coherent and the momentfluctuations are additive 
with the intensity behaving as the square of the moments. This is the source of the surplus 
intensity at the [OOl] position. 

The final important question to consider is whether the effects of two nearby 
impurities will cancel or not. In the previous calculation all the host atoms were nearest 
neighbours to at most one impurity atom and the resulting behaviour is well described 
by two coherently superimposed single impurity distortions. Our final cluster depicted 
in figure 6(a) finds host atoms with two nearest neighbour impurities. The calculation is 
presented in the appendix and the resulting spin distortions which are represented by: 

T~ = - sin qTsO + (cos qT/22/2)[c0s vT(3s1 + S O )  + ~ ‘ 3  sin v r ( ~ 3  - s,)]  (4 .7~)  

R3 = - sin q R S 0  + (COS q~/22/2)(3S3 + S o )  (4.7b) 

u1 = - sin qusO + (cos qu72V2)[c0s vu(3s1 + S O )  + V 3  sin v u ( ~ 3  - s,)] (4.7~) 

are pictured in figure 6(b). Although the two angles vT and qv remain small, the three 
q x  are rather different from the previous calculations. The dominant effect is that the 
spins with two impurity neighbours flop down into the Cu3Au directions. This is a non- 
linear effect there being almost three times as big a rotation as for the single impurity 
case. Interestingly the R3 spins hardly move at all and the U1(,) spins rotate further than 
for one impurity. 

When we come to the resulting magnetic diffuse scattering, the reduction in symmetry 
for this cluster yields rather different contributions in the three Cartesian directions. The 
results are depicted in figure 6(c). When the scattering vector is parallel to the vector 
joining the impurities we find a hugely enhanced contribution which has half the experi- 
mentally observed intensity, and perpendicular to that direction we find similar scat- 
tering to that for the single impurity case. There is no reduction in the intensity averaged 
over the three Cartesian directions when compared with the more distant impurities. 

5. Conclusions 

If we assume that the Ni atoms are effectively paramagnetic, then we have a parameter 
free description of the magnetic diffuse scattering as a function of impurity positions. 
The basic theoretical assumptions are: 

(i) host atom spins have fixed magnitude; 
(ii) spatial symmetries of the system which remain in the presence of the impurities 

(iii) the host spins interact with nearest neighbour Heisenberg interactions. 
are not spontaneously broken; 
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together with laverage, the contribution from many 
such independent pairs of impurities randomly 
oriented along all three Cartesian directions. 

Under these assumptions a collinear impurity would yield completely structureless 
magnetic diffuse scattering. Impurities in the triple-Q state, however, yield precisely the 
experimentally observed functional form of magnetic diffuse scattering. 

If the comparison is extended to correlated impurities, then for the non-collinear 
state the spins between the impurities perform the augmented rotations suggested in 
section 4. For the collinear state, none of the host spins would be expected to move. The 
expected correlated scattering can be deduced from the nuclear diffuse scattering, which 
also only depends on the positions of the impurity atoms. Experimentally there is no 
real comparison between the two as is exhibited in the work of Moze and Hicks [22]. 
Only if the magnitudes of the host spins are allowed to fluctuate is there any hope of 
using the collinear state to explain the magnetic diffuse scattering. 

If we relax our assumption that the spins are of fixed magnitude, then the collinear 
impurity can also describe the functional form of the scattering. The basic problem with 
the collinear description, is that in order to achieve the enormous intensity of scattering 
the local spin distortions are required to be huge with neighbouring spins doubling in 
magnitude. Even more disturbing is that when impurities are close together, simple 



6028 M W Long and 0 Moze  

arguments would suggest that their effects would cancel making the huge scattering 
intensity even harder to predict. 

Both of these problems are avoided in our description. The physical picture our 
model suggests is small rotations of the host spins iocally compensating for the impurity 
atoms. When impurity atoms are close together, rather than cancel, we find that the 
enhanced stability of the nearby Cu3Au spin structure tends to non-linearly increase the 
local distortion rather than reducing it. Both of these predictions are more satisfying 
than their collinear counterparts. 

Another important consideration is that for the triple-Q state whatever the local 
symmetry of the impurities, there is always a direction in spin space in which the host 
spins can relax and compensate for the impurities. 

One of the most important observations that we make is that the huge intensity at 
the [OOl] position can be explained by local coherence between neighbouring impurities. 
This local coherence probably becomes lost in the orientational nature of the local 
impurity symmetries which can be used to explain why long range phase coherence does 
not result. In fact the experimentally observed intensity is found in the scattering 
enhancement of around five coherent impurities since the intensity per impurity scales 
linearly with the number of coherently coupled impurities. The most effective scattering 
centres have two impurities which are parallel to the scattering vector as depicted in 
figure 6(a ,  c) . 

The assumption of a very short range interaction between spins gives remarkably 
good agreement with experiment and we take this to indicate that this model is fun- 
damentally describing the basic physical processes at work in this system. 

Finally we would like to point out the physical reason for the huge peak at [ O O l ]  in 
our model. The FCC lattice is antiferromagnetically frustrated. The ordering produces 
scattering at the [ O O l ]  Bragg reflections. Since each atom finds only eight antiparallel 
neighbours with four parallel neighbours the ordering yields only one third of the 
unfrustrated maximum. The inclusion of Nickel impurities allows a local release of the 
frustration and a corresponding enhancement of the Nee1 ordering. This is the physical 
source of the extra scattering at [OOl].  

Appendix 

The classical solution to the Heisenberg model finds the spins parallel to the field made 
by the nearest neighbours. For the single impurity we find: 

ATT,  = K S ~  + 3S0 + 2Tp + 2T, + 2Rp + 2R, (All  

with {a, /3, y }  = { 1 , 2 , 3 }  for the nearest neighbours and: 

ARR, = 4S0 + 2Sp + 2S, + Tp + T ,  + Rp + R ,  

for the next relevant shell of neighbours. The parameters AT and AR are Lagrange 
multipliers which are chosen so that T ,  and R ,  are correctly normalised. 

The nearest neighbour solution is that to (Al) where R ,  = S, and the calculation 
where both neighbouring shells are free to move is the solution to ( A l )  and simul- 
taneously to (A2). 
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The best technique to find the solution is to define a new basis: 

for which the equations separate to become: 
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(A31 

and these are straightforward linear equations. Noting that d 3 S ’  = -So, we may deduce 
cpx by observing that X’  = ( -1)d3S0 sin qx. It only remains to choose AT and AR by 
normalisation. 

The calculation with two impurities on the cube diagonal is also very similar and we 
find: 

ATT, = K S ~  + 3So + Sp + S ,  + 2Tp + 2T, + Rp. + R,, 

A,RbY = K S ~  + 3So + 2Sp + 2S, + T ,  + Rp, + R,, + Up 

AuU,  = K S o  + 3so + 2Sp + 2S, + R,p + R,, + Up + U , .  

(A51 

(4 
(A71 

The change of basis technique is still useful but now we employ {RI, R ,  R*} for {R13, R31, 
RI2}  and [ r ’ ,  r ,  r*} for (R32, R13, R21}. The transformed equations become: 

and we are left to solve and normalise. 
The final calculation with next nearest neighbour impurities yields: 
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AuU2 = (3 + K)S, + 2S1 + 2U1 + 2S3 + 2R3. (A14) 
This cluster has reduced symmetry to previous cases and: 

2-A, 8 0 2S3 - 2(1+ 2 ~ ) s ~  

-AR 1 -I- T 2 ]  = [ 2S3 - (1 + K)s, ] (A15) 
4 2-Au u1+u2 2 S 3 - 2 ( 2 + ~ ) s ,  

( A W  

(A17) 

[a 
T1 - T2 = (2/2 + A T ) ( S 2  - SI) 

U1 - U2 = (2/2 + Au)(S2 - S , )  

and we are left to solve and normalise. 
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